[vc_empty_space][vc_empty_space]
Implementation of overlap degree in sphere packed sedimentary rock model and its impact to pore structure characteristics
Latief F.D.E.a, Pantouw G.T.a, Wongkaren H.J.a, Amien N.a
a Laboratorium Fisika Bumi, Kelompok Keilmuan Fisika Bumi Dan Sistem Kompleks, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Computerized rock modelling is studied and developed because natural rock samples can sometimes be difficult and expensive to obtain. Sedimentary rock modelling is a process of generating a digital sedimentary rock model using numerical methods which resembles the ideas and processes of natural sedimentary rock formation. One of the most important physical characteristics in generating the model is how the pore structure is affected by overlap degree among each grain. The overlap degree simulates the output of compaction process in natural sedimentary rock formation. The approach to implement such idea is by using spherical grains so that the degree of overlap could exactly be determined quantitatively. Stochastic method is used in the algorithm to map each grain positions based on a desired range of overlap degree. From previous trials it shows that higher overlap degree produces lower porosity. The algorithm is implemented in generating two dimensional cross sections of the model as well as in generating three-dimensional structure. Characteristics of pore structure are analyzed for various modelling parameters to obtain better understanding of the modelling nature.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Compaction process,Grain positions,Physical characteristics,Spherical grains,Stochastic methods,Structure characteristic,Three-dimensional structure,Two-dimensional cross sections[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1755-1315/311/1/012042[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]