Enter your keyword

2-s2.0-85071915523

[vc_empty_space][vc_empty_space]

Complexity analysis of interconnected pore using hydraulic tortuosity

Juliust H.a, Amien M.N.a, Pantouw G.T.a, Latief F.D.E.a

a Kelompok Keilmuan Fisika Bumi Dan Sistem Kompleks, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.The complexity of the pore structure has been analysed using hydraulic tortuosity. The hydraulic tortuosity is defined as the ratio between the total curvature angles of the fluid flowpath to the distance between two facing sides of the sample. The fluid flowpaths in the connected pore are represented by streamlines which are calculated from the velocity map obtained from fluid flow simulation by means of Lattice Boltzmann Method. The streamline that is calculated with Euler Methods produce coordinates of the flowpath in the connected pore which are then used to calculate the tortuosity. The streamline are verified in a simple porous medium. The complexity analysis is verified on three simple models showing significant differences in complexity levels. The streamline generated using euler methods is suitable for the porous medium. The relation of the tortuosity and the permeability is tested in two porous medium that the permeability is known. It is found that the more complex the pore structure, the greater the tortuosity value. The hydraulic tortuosity is also inversely proportional to the permeability.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Complexity analysis,Complexity levels,Euler method,Interconnected pores,Lattice Boltzmann method,Porous medium,Total curvature,Velocity maps[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1755-1315/311/1/012034[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]