Enter your keyword

2-s2.0-85072139763

[vc_empty_space][vc_empty_space]

Uniserial dimension of module zm × zn over Z using python

Arifin S.a, Garminia H.a

a Institut Teknologi Bandung, Faculty of Mathematics and Natural Sciences, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019, International Journal of Scientific and Technology Research. All rights reserved.Recently, the notion of the uniserial dimension of a module over a commutative ring that measures of how far the module deviates from being uniserial was introduced by Nazemian in 2014. In this article, we give some methods to determine the uniserial dimension of a finitely generated primary module over a principal ideal domain, especially u.s. dim (Zm × Zn)Z, m, n ε Z using Python. It is well known that finitely generated primary modules over a principal ideal domain can be decomposed as a direct sum of finite cyclic submodules where the orders of the cyclic generators are called the elementary divisors of the module. We show that u.s. dim (Zm × Zn)Z is depends on prime factorization of m and n.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Index Terms: Uniserial dimension,Module Zm × Zn over Z,Python[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors wish to thank Professor Pudji Astuti and Dr. Hanni Garminia. This work was supported with the help of facilities and infrastructure of Institut Teknologi Bandung. We thank you deeply for your support during this time.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]