[vc_empty_space][vc_empty_space]
A multi-point mechanism of expected hypervolume improvement for parallel multi-objective Bayesian global optimization
Yang K.a, Palar P.S.b, Emmerich M.a, Shimoyama K.c, Back T.a
a Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
b Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, Indonesia
c Institute of Fluid Science, Tohoku University, Sendai, Japan
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Association for Computing Machinery.The technique of parallelization is a trend in the field of Bayesian global optimization (BGO) and is important for real-world applications because it can make full use of CPUs and speed up the execution times. This paper proposes a multi-point mechanism of the expected hypervolume improvement (EHVI) for multi-objective BGO (MOBGO) by the utilization of the truncated EHVI (TEHVI). The basic idea is to divide the objective space into several sub-objective spaces and then search for the optimal solutions in each sub-objective space by using the TEHVI as the infill criterion. We studied the performance of the proposed algorithm and performed comparisons with Kriging believer technique (KB) on five scientific benchmarks and a real-world application problem (i.e., a low-fidelity multi-objective airfoil optimization design). The stochastic experimental results show that the proposed algorithm performs better than the KB with respect to the hypervolume indicator, indicating that the proposed method provides an efficient parallelization technique for MOBGO.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Airfoil optimization,Application problems,Bayesian,Hypervolume,Hypervolume indicators,Kriging,Parallelization techniques,Parallelizations[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Expected Hypervolume Improvement,Kriging,Multi-Objective Bayesian Global Optimization,Parallelization[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1145/3321707.3321784[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]