[vc_empty_space][vc_empty_space]
DFT and microkinetic investigation of methanol synthesis: Via CO2 hydrogenation on Ni(111)-based surfaces
Maulana A.L.a, Putra R.I.D.a, Saputro A.G.a,b, Agusta M.K.a, Nugrahaa, Dipojono H.K.a
a Advanced Functional Materials Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Engineering Physics Program, Institut Teknologi Sumatera (ITERA) South Lampung, Lampung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 the Owner Societies.A DFT study of methanol production via CO2 hydrogenation reactions on clean Ni(111) and Ni(111)-M (M = Cu, Pd, Pt, or Rh) surfaces has been performed. The reaction network of this synthesis reaction has been determined using energy profiles. The competing reaction network between the formate-mediated route and the carboxyl-mediated route is also presented. Both routes are equally possible in mediating the overall synthesis reactions. A simple selectivity analysis based on the energy barrier shows that methanol synthesis is more preferred rather than formic acid (HCOOH) or carbon monoxide (CO) production. A mean-field kinetic analysis is also employed to determine the kinetic performance of all catalytic surfaces. The formate-mediated route is found to be energetically and kinetically more dominant than the carboxyl-mediated route. Cu, Pd, and Pt dopants are successful in increasing the kinetic performance of the clean Ni(111) surface in the formate route and Cu, Pt, and Rh dopants in the carboxyl route.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Catalytic surfaces,CO2 hydrogenation,Energy profile,Mean-field kinetics,Methanol production,Methanol synthesis,Reaction network,Synthesis reaction[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is fully funded by Institut Teknologi Bandung through the ‘‘Program Riset dan Inovasi ITB’’ grant. ALM appreciates scholarship from Lembaga Pengelola Dana Pendidikan (LPDP). All calculations were performed using High Performance Computing facility in Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1039/c9cp02970b[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]