Enter your keyword

2-s2.0-85072637566

[vc_empty_space][vc_empty_space]

Preparation of Superhydrophobic Zinc Oxide Nanorods Coating on Stainless Steel Via Chemical Bath Deposition

Nuruddin A.a, Yuliarto B.a, Kurniasih S.a, Setiyanto H.a, Ramelan A.a

a Engineering Physics Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Published under licence by IOP Publishing Ltd.The stearic acid modified zinc oxide nanorod surface was coated with a stainless steel substrate to improve the contact angle and the sliding angle. Facilitated through ZnO seeding on the substrate, the ZnO nanorod was deposited via chemical bath deposition at different precursor concentrations. The surface hydrophobicity was modified by varying concentrations of stearic acid at and submmersion time. The contact angle was investigated in relation to the surface microstructure and modification. Results indicate that the density of ZnO nanorods on the substrate surface and stearic acid coverage are prerequisites for improving surface hydrophobicity. Superhydrophobic properties with a contact angle of 162° was obtained for ZnO deposited with 35 mM zinc nitrate and submerged in 8 mM stearic acid for 36 h, which allowed 5 μL water droplets to slide at 3.8°.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chemical-bath deposition,Different precursors,Stainless steel substrates,Substrate surface,Superhydrophobic,Surface hydrophobicity,Surface microstructures,Zinc oxide nanorods[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]chemical bath deposition,contact angle,stainless steel,stearic acid[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research is supported by the Directorate General of Higher Education, the Ministry of Higher Education, Research and Technology, the Republic of Indonesia, through the Decentralization Research Program.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1757-899X/547/1/012052[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]