[vc_empty_space][vc_empty_space]
Coadsorption of hydrazine (N2H4) and OH on NiZn surface: A DFT-based study
Agusta M.K.a, Saputro A.G.a, Ihsan A.Z.a, Krishna R.a, Fathurrahman F.a, Dipojono H.K.a, Dino W.A.b
a Advanced Functional Materials Research Group, Faculty of Industrial Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Department of Applied Physics, Osaka University, Osaka, 565-0871, Japan
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Elsevier B.V.We investigated the coadsorption of hydrazine (anti- and cis-N2H4) and hydroxyl (OH) on a Ni–Zn based alloy surface, using density functional theory (DFT) based total energy calculations. We found that the presence of Zn induces trends in N2H4 adsorption strength on sites that can be correlated with ligand-effect. On a surface with adsorbed anti- or cis-N2H4, we observe preferential OH adsorption of the bridge-sites, allowing for direct chemical interaction and subsequent N2H4 dehydrogenation. Stronger surface energetic corrugation is found in OH coadsorption with cis-N2H4 that suggests some involvement of electrostatic interaction as well.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adsorption strength,Bridge sites,Chemical interactions,Co-adsorption,First principles,Ligand effect,Total energy calculation,Zn-based alloys[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adsorption,DFT,First-principles,Hydrazine,Ni–Zn,Surface[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘We gratefully acknowledge funding from the Indonesia Ministry of Research, Technology and Higher Education through the World Class Professor (WCP) and World Class University (WCU) Programs managed by Institut Teknologi Bandung, with partial support from Japan MEXT Grant-in-Aid for Scientific Research (JP17K06818, JP17H01057, JP15H05736). Calculations are done using supercomputing facility in Osaka University and Institut Teknologi Bandung.’}, {‘$’: ‘We gratefully acknowledge funding from the Indonesia Ministry of Research, Technology and Higher Education through the World Class Professor (WCP) and World Class University (WCU) Programs managed by Institut Teknologi Bandung, with partial support from Japan MEXT Grant-in-Aid for Scientific Research (JP17K06818, JP17H01057, JP15H05736). Calculations are done using supercomputing facility in Osaka University and Institut Teknologi Bandung.’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.susc.2019.121505[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]