[vc_empty_space][vc_empty_space]
Two-Layer Non-Hydrostatic Scheme for Simulations of Wave Runup
Ginting M.A.a, Pudjaprasetya S.R.a, Adytia D.b
a Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b School of Computing, Telkom University, Terusan Buah Batu, Bandung, 40257, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 World Scientific Publishing Company.There are indisputable research supporting scientific argument that propagation of (tsunami) wave from intermediate depth towards shallower coastal area needs dispersive wave model. For tsunami wave simulation, efficiency of the numerical scheme is an important issue. In this paper, the two-layer non-hydrostatic model as developed previously in Pudjaprasetya et al. [2017] “A non-hydrostatic two-layer staggered scheme for transient waves due to anti-symmetric seabed thrust,” J. Earthquake Tsunami 11, 1-17, to study tsunami generation and propagation, is adopted. Restricting to 1+1 dimension, here, we focus on the performance of the scheme in simulating wave propagation in coastal areas, in particular predicting the run-up height. First, we conducted a simulation of harmonic wave over a sloping beach to conform the analytical shoreline motion by Carrier and Greenspan [1958] “Water waves of finite amplitude on a sloping beach,” J. Fluid Mech. 4, 97-109. The ability of the scheme in accommodating dispersion and non-linearity were shown via simulation of a solitary wave that propagates over a flat bottom. This solitary wave simulation provides an evaluation of the convergence aspect of the model. Further, several benchmark tests were conducted; a solitary wave over a sloping beach to mimic the experimental data by Synolakis [1986] “The run-up of solitary waves,” J. Fluid Mech. 185, 523-545, as well as solitary wave over a composite beach. Good agreement with laboratory data was obtained in terms of wave signal, whereas for relatively low amplitude, the solitary run-up height conforms the analytical formula. Moreover, the scheme is tested for simulating the Beji-Battjes experiment Beji, S. and Battjes, J. A. [1993] “Experimental investigation of wave propagation over a bar,” Coast. Eng. 19, 151-162. As well as wave focusing experiment by Kurnia et al. [2015] “Simulations for design and reconstruction of breaking waves in a wavetank,” Proc. ASME 2015 34th Int. Conf. Ocean, Offshore and Arctic Engineering, Newfoundland, Canada, 31 May-5 June 2015, pp. 2-7.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]dispersion,Non-hydrostatic model,solitary wave run-up[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Financial support from Kemenristek Dikti Research Grant, with contract number 1171f/I1.C01/PL/2019 and 1172g/I1.C01/PL/2019 is greatly acknowledged.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1142/S1793431119410045[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]