Enter your keyword

2-s2.0-85073199634

[vc_empty_space][vc_empty_space]

Conversion of levoglucosan to glucose using an acidic heterogeneous Amberlyst 16 catalyst: Kinetics and packed bed measurements

Abdilla-Santes R.M.a,b, Rasrendra C.B.c, Winkelman J.G.M.a, Heeres H.J.a

a Green Chemical Reaction Engineering, ENTEG, University of Groningen, Groningen, 9747, Netherlands
b Department of Chemical Engineering, University of Brawijaya, Malang, 65145, Indonesia
c Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Institution of Chemical EngineersLevoglucosan (1,6-anhydro-β-D-glucopyranose) is an anhydrosugar found in significant amounts in pyrolysis liquids obtained from lignocellulosic biomass. Levoglucosan (LG) is an attractive source for glucose (GLC), which can be used as a feedstock for biofuels (e.g. bioethanol) and biobased chemicals. Here, we report a kinetic study on the conversion of LG to GLC in water using Amberlyst 16 as the solid acid catalyst at a wide range of conditions in a batch set-up. The effects of the reaction temperature (352–388 K), initial LG intake (100–1000 mol m−3), catalyst loading (1–5 wt%), and stirring rate (250–1000 rpm) were determined. The highest GLC yield was 98.5 mol% (388 K, 5 wt% Amberlyst 16, CLG,0 = 500 mol m−3 at 500 rpm stirring rate and t = 60 min). The experimental data were modelled and relevant kinetic parameters were determined using a first order approach including diffusion limitations of LG inside the Amberlyst particles. Good agreement between experiments and kinetic model was obtained. The activation energy was found to be 132.3 ± 10.1 kJ mol−1. Experiments in a continuous packed bed set-up for up to 30 h show that catalyst stability is good. In addition, the steady state LG conversion (73 mol%) and the GLC selectivity were in line with the kinetic model obtained in the batch reactor.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Amberlyst,Catalyst stability,Diffusion limitations,Kinetic modeling,Levoglucosan,Lignocellulosic biomass,Reaction temperature,Solid acid catalysts[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Amberlyst 16,Glucose,Kinetic model,Levoglucosan,Pyrolysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘R.M. Abdilla-Santes express gratitude to the Directorate General of Higher Education, Ministry of Education and Culture, Indonesia for funding of her PhD program. C.B. Rasrendra acknowledges ITB for receiving a WCU-ITB grant. The authors also thank Jan Henk Marsman, Leon Rohrbach, Erwin Wilbers, Marcel de Vries, and Anne Appeldoorn for analytical and technical support, and Henk van de Bovenkamp for input in the reactor modelling.’}, {‘$’: ‘R.M. Abdilla-Santes express gratitude to the Directorate General of Higher Education, Ministry of Education and Culture , Indonesia for funding of her PhD program. C.B. Rasrendra acknowledges ITB for receiving a WCU-ITB grant. The authors also thank Jan Henk Marsman, Leon Rohrbach, Erwin Wilbers, Marcel de Vries, and Anne Appeldoorn for analytical and technical support, and Henk van de Bovenkamp for input in the reactor modelling.’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.cherd.2019.09.016[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]