Enter your keyword

2-s2.0-85073319700

[vc_empty_space][vc_empty_space]

Modeling of armchair graphene nanoribbon tunnel field effect transistors for low power applications

Suhendi E.a, Hasanah L.a, Noor F.A.b, Kurniasih N.b, Khairurrijalb

a Universitas Pendidikan Indonesia, Bandung, 40154, Indonesia
b Physics of Electronic Material Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019, Institute of Electronics Engineers of Korea. All rights reserved.Characteristics of an armchair graphene nanoribbon tunnel field effect transistor (AGNR-TFET) were modeled quantum mechanically. The transport equation in the AGNR-TFET was solved by using the Dirac-like equation. The potential profile in the AGNR-TFET was determined by solving the Dirac-like equation and the self-consistent Poisson equation. The transfer matrix method (TMM), as a numerical approach, and the Landauer formula were used to calculate the electron transmittance and the tunneling current respectively. The threshold voltage of the device was around 0.01 V. The effect of the AGNR-TFET’s geometry, i.e. width and length of AGNR and oxide thickness, on the tunneling current and the subthreshold swing was also analyzed. It was found that the tunneling current increased with an increase of the width of the AGNR and the oxide thickness while increasing the length of the AGNR made the tunneling current decrease. According to the simulation results, the subthreshold swing of the device can achieve 5 mV/dec. Moreover, the AGNR-TFET geometry affects the subthreshold swing of the device.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Armchair graphene,Dirac-like equation,Low power application,Numerical approaches,Potential profiles,Subthreshold swing,Transport equation,Tunneling current[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Armchair graphene nanoribbon,Dirac-like equation,Transfer matrix method,Tunnel field-effect transistor,Tunneling current[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work wasfinancially supported by “Hibah Penelitian Berbasis Kompetensi” Research Grants, Direktorat Riset dan Pengabdian Masyarakat, Direktorat Jenderal Penguatan Riset dan Pengembangan, Kementrian Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia in the fiscal year 2018.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5573/JSTS.2019.19.4.336[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]