Enter your keyword

2-s2.0-85073598854

[vc_empty_space][vc_empty_space]

Computation of Cusp Bifurcation Point in a Two-Prey One Predator Model using Lagrange Multiplier Method

Owen L.a, Tuwankotta J.M.a

a Analysis and Geometry Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.In this paper we introduce a new method for computing cusp bifurcation point in a system of two prey one predator dynamical system. The method consists of rewriting the system of equations for the equilibria in a constrained optimization problem at where the classical Lagrange Multiplier Method can be applied to derive the fold bifurcation point. By having one extra parameter as free parameter we construct two fold curves which intersect each other nontransversally in a cusp bifurcation point. This result is verified by looking at three section in two-dimensional parameter space by taking one of the parameter constant and study the stability of the equilibria.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bifurcation points,Constrained optimi-zation problems,Free parameters,Lagrange multiplier method,System of equations[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Acknowledgment Livia Owen acknowledges the financial support from The Indonesian Education Scholarship Program (LPDP), Ministry of Finance of the Republic of Indonesia. J.M. Tuwankotta’s research is supported by research grant Riset KK B FMIPA ITB 2019, Institut Teknologi Bandung.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1298/1/012008[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]