Enter your keyword

2-s2.0-85073985274

[vc_empty_space][vc_empty_space]

Context-dependent models (CRRM, MuRRM, PRRM, RAM) versus a context-free model (MNL) in transportation studies: a comprehensive comparisons for Swiss and German SP and RP data sets

Belgiawan P.F.a,b, Dubernet I.a, Schmid B.a, Axhausen K.a

a ETH Zurich, Institute for Transport Planning and Systems, Zurich, Switzerland
b School of Business and Management, Bandung Institute of Technology, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019, © 2019 Hong Kong Society for Transportation Studies Limited.The random regret minimization (RRM) model considers the relative performance of the alternatives and is therefore context-dependent. In RRM, an individual, when choosing between alternatives, is assumed to minimize anticipated regret as opposed to maximize his/her utility. There are three variants of RRM, the classical CRRM, the µRRM, and the P-RRM. There is also a further approach called relative advantage maximization (RAM). We compare multinomial logit with the four mentioned alternatives. We use stated choice data sets which include mode choice, location choice, parking choice, carpooling, car-sharing. We compare the performance of those five models by their model fit, values of travel time savings (VTTS), and elasticities. Looking at the model fit, RAM outperforms the other models in five cases, whereas the PRRM does so in two cases and µRRM only for one case. The VTTS and elasticities vary substantially which is relevant for cost–benefit analysis or simplified modeling approaches.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Comprehensive comparisons,Context dependent,Context-dependent models,Multinomial Logit,Random regret minimizations,Relative performance,RRM variants,Travel time savings[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Context-dependent models,random regret minimization,relative advantage maximization,RRM variants[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1080/23249935.2019.1612968[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]