[vc_empty_space][vc_empty_space]
Seiches and harbour oscillations in a porous semi-closed basin
Magdalena I.a, Rif’atin H.Q.a, Reeve D.E.b
a Industrial and Financial Mathematics Research Group, Fac. of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
b Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, SA1 8EN, United Kingdom
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 The AuthorsIn this paper, we investigate the propagation of long waves in to a harbour with three different porous bottom configurations. The governing shallow water equations are modified to include additional terms to model the porous region. Analytical solutions are sought in the non-porous bottom case using a separation of variables method to provide the natural resonant periods of the basin for the three different harbour geometries. For fixed basin length the lowest resonant frequency increases as the profile goes from rectangular to parabolic to triangular. However, the rate of amplification increases from triangular, rectangular to parabolic. A computational scheme is proposed, using a finite volume method on a staggered grid, and is validated against the analytical solution prior to being used to investigate the effect of porosity and friction on wave resonance. The relative effectiveness of friction and porosity in controlling resonance is found to be dependent on basin geometry.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Computational schemes,Long waves,Natural resonant period,Separation of variables method,Shallow water equations,Staggered grid,Wave resonances[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Natural resonant period,Porous media,Resonance,Shallow water equation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘The authors acknowledge the support from Riset WCU-ITB and The Royal Academy of Engineering (Grant no. IAAP1/100086).’}, {‘$’: ‘The authors acknowledge the support from Riset WCU-ITB and The Royal Academy of Engineering (Grant no. IAAP1/100086 ).’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.amc.2019.124835[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]