Enter your keyword

2-s2.0-85074197682

[vc_empty_space][vc_empty_space]

Effects of carbon substitution on electronic properties of the ultra-small boron nitride nanotube using density functional theory

Jonuarti R.a, Yusfi M.a,b, Wungu T.D.K.a, Haryanto F.a, Suprijadia

a Department of Physics, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Department of Physics, Universitas Andalas, Padang, 25163, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Elsevier B.V.We perform the local density approximation (LDA) in the density functional theory (DFT) to calculate the electronic properties of carbon-substituted the ultra-small (2,2) armchair boron nitride nanotube (BNNT) structures. In this work, we choose carbon (C) atoms to substitute boron (B) or nitrogen (N) atoms in the pristine structure of the ultra-small (2, 2) armchair BNNT. By substituting one or two atoms (B or N) in the pristine structure with C, the band gap of the ultra-small (2, 2) armchair BNNT (3.01 eV) will reduce or vanish. The existence of C atoms converts the ultra-small (2, 2) armchair BNNT from an insulator nanotube to a semiconductor and a metallic nanotube depend on whether B or N atom sites replaced by C atoms. Furthermore, substituting B atoms with C atoms in the certain sites in the ultra-small (2,2) armchair BNNT pristine structure, will generate that nanotube possesses the n and p semiconductor carrier type.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Band gap,Boron nitride nanotube,Carrier type,Density functional theory,Density of state[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This study is supported by KEMENRISTEKDIKTI Indonesia through Hibah Penelitian Disertasi Doktor (PDD) for funding in 2019 with decree number: 127/SP2H/LT/DRPM/2019 and contract number: 7/E/KPT/2019 . The author thank to the leader of Advance Computational Physics Laboratory of Physics department of Institut Teknologi Bandung (ITB) which has provided facilities for conducting this research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.cocom.2019.e00442[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]