Enter your keyword

2-s2.0-85074438911

[vc_empty_space][vc_empty_space]

Tropical peatland identification using L-Band full polarimetric synthetic aperture radar (SAR) imagery (Study case: Siak regency, riau province)

Ayunda D.a, Wikantika K.a, Novresiandi D.A.a, Harto A.B.a, Virtriana R.a, Hidayat T.A.a

a Center of Remote Sensing, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Institut Pertanian Bogor.From revious research reported that tropical peatland is one of terrestrial carbon storage in Earth, and has contribution to climate change. Synthetic Aperture Radar (SAR) is one of remote sensing technology which is more efficient than optical remote sensing. Its ability to penetrate cloud makes it useful to monitor tropical environment. This research is conducted in a tropical peatland in Siak Regency, Riau Province. This research was conducted to identify tropical peatland in Siak Regency using polarimetric decomposition, unsupervised classification ISODATA, and Radar Vegetation Index (RVI) from SAR data that had been geometrically and radiometrically corrected. Polarimetric decomposition Freeman-Durden was performed to analyze radar backscattering mechanism in tropical peatland, which shows that volume and surface scattering was dominant because of the presence of vegetation and open area. Unsupervised classification ISODATA was then performed to extract “shrub class”. By assessing its accuracy, the class that represents shrub class in reference map was selected as the selected “shrub class”. RVI then was calculated using a certain formula. Spatial analysis was then conducted to acquire certain information that average value of RVI in tropical peatland tend to be higher than in non-tropical peatland. By integrating selected “shrub class” and RVI, peat classes were extracted. The best peat class was selected by comparing with peatland referenced map which is acquired from the Indonesian Agency for Agricultural Resources and Development (IAARD) using error matrix. In this research, the best peat class yielded 73.5 percent of Producer’s Accuracy (PA), 81.6 percent of User’s Accuracy (UA), 66.1 percent of Overall Accuracy (OA), and 0.1079 of Kappa coefficient (Ks).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]ISODATA classification,Polarimetric decomposition,Radar vegetation index (RVI),Riau,Siak,Synthetic aperture radar (SAR)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Referenced data that is used in this research are peatland referenced map which is acquired from the Indonesian Agency for Agricultural Resources and Development (IAARD), Ministry of Agricultural Republic of Indonesia, and land use/cover referenced map that is derived from Landsat ETM+ and is acquired by 1 May 2010. The peatland referenced map is a vector data in geodetic reference system. The land use/cover has spatial resolution 30 metres (multispectral) and 15 metres (panchromatic).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4308/hjb.26.2.63[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]