Enter your keyword

2-s2.0-85074544442

[vc_empty_space][vc_empty_space]

Generating a chain of maps which preserve the same integral as a given map

Tuwankotta J.M.a, Van Der Kamp P.H.b, Quispel G.R.W.b, Saputra K.V.I.c

a Analysis and Geometry Group, FMIPA, Institut Teknologi Bandung, Bandung, Indonesia
b Department of Mathematics and Statistics, La Trobe University, Bundoora, 3083, Australia
c Applied Math, Universitas Pelita Harapan, Banten, Tangerang, 15811, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IOP Publishing Ltd.We generalise the concept of duality to systems of ordinary difference equations (or maps). We propose a procedure to construct a chain of systems of equations which are dual, with respect to an integral H, to the given system, by exploiting the integral relation, defined by the upshifted version and the original version of H. When the numerator of the integral relation is biquadratic or multi-linear, we point out conditions where a dual fails to exists. The procedure is applied to several two-component systems obtained as periodic reductions of 2D lattice equations, including the nonlinear Schrödinger system, the two-component potential Korteweg-De Vries equation, the scalar modified Korteweg-De Vries equation, and a modified Boussinesq system.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]complexity,duality,Integral relations,integrals,Lattice equation,Modified korteweg-de vries equations,Systems of equations,Two component systems[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]complexity,duality,integrals,lattice equations,mappings[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was started during the La Trobe-Indonesia Collaboration Workshop (2017) and was further supported by Riset WCU-ITB Kerjasama Internasional 2017: Duality in Discrete Integrable Systems, by the Australian Research Council and by a La Trobe Asia grant.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1402-4896/ab36f1[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]