[vc_empty_space][vc_empty_space]
The comparative analysis of dependence for three-way contingency table using Burt matrix and Tucker3 in correspondence analysis
Lestari K.E.a, Pasaribu U.S.a, Indratno S.W.a, Garminia H.a
a Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.In this paper, we confined our attention to compare two methods to obtain a graphical depiction of the association (dependency) between three categorical variables. We shall first describe how to recode a three-way contingency table by discussing the Burt matrix form of the data. This method is known as multiple correspondence analysis (MCA). Another method is to preserve a three-way contingency table form using Tucker3, it’s known as a three-way correspondence analysis (CA3). As a case study, we pay attention to analyze the association between race and gender in occupation field that may have contributes to differences in employment opportunity and the continuing increases in women’s educational attainment. The results show that CA3 is more simple in computation and provide the graphical depiction of three-way association simultaneously, while MCA’s plot can’t. Consider to the cumulative inertia on the two-dimensional plot, the percentage inertia of CA3’s plot is better than MCA’s plot.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Categorical variables,Comparative analysis,Contingency table,Correspondence analysis,Educational attainments,Employment opportunities,Matrix forms,Multiple correspondence analysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1245/1/012056[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]