Enter your keyword

2-s2.0-85074754525

[vc_empty_space][vc_empty_space]

Chaotic Behaviour of Modified Hamiltonian Peyrard-Bishop-Dauxois Model on DNA System

Sutantyo T.E.P.a, Dwiputra D.a, Hidayat W.a, Zen F.P.a

a Theoretical Physics Laboratory, THEPI Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.DNA research has involved a variety of disciplines across fields, which work complementary and supportive by using the theory, model, and experiment. Physics provides a theoretical basis that can be used for experimentation, as well as developing new physical models. This physical model can explain the nonlinear dynamics of DNA. In this study, we modified Hamiltonian Peyrard-Bishop-Dauxois (PBD) model by adding the influence of the surrounding environment namely thermal bath, in the form of time-dependent thermal friction and stochastic white noise. Both are represented through the Nosé-Hoover-Langevin (NHL) thermostat. Formulations of equation motion are obtained using analytical methods, to be solved using numerical methods. We present the numerical calculations results in phase space images to show chaotic behaviour. Furthermore, we gain an increase in chaotic patterns along with the increase in temperature. In addition, we also obtain the relationship between the distance of the base pair with temperature, especially in the denaturation process.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Analytical method,Chaotic behaviour,Chaotic pattern,Denaturation process,Numerical calculation,Peyrard-Bishop-Dauxois model,Surrounding environment,Thermal friction[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The works of this research is supported by PDUPT of The Ministry of Research, Technology, and Higher Education of the Republic of Indonesia. TEPS thank to supervisor FPZ and WH for several useful discussions. TEPS thank to Scholarship of LPDP RI for financial support during the study.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1245/1/012070[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]