[vc_empty_space][vc_empty_space]
Network Analysis of Saccharomyces Cerevisiae Colony: Relation between Spatial Position and Generation
Meiriska W.a, Purnama F.A.a, Aji D.P.P.a, Aprianti D.a, Viridi S.a
a Nuclear and Biophysics Research Division, Physics Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Yeast colony growth which can grow and produce buds can be modelled by using circular granular cells in two-dimensional form. The organizations of particles in granular materials as modelled as yeast colony growth have complex organizations on a spatial scale. Such organizations may affect how materials respond or reconfigure when exposed to external interference or loading. Particles have been studied in theoretical and require the development and application of appropriate mathematical, statistical, physical and computational frameworks. Usually, granular materials have been explored using particles or circuit models that are implicit. Today the development of network science has emerged as a powerful approach to investigate and characterize heterogeneous architecture in complex systems and diverse methods have yielded interesting insights into granular materials. In this study will learn granular materials (yeast colony growth) with the network-based approach and explore the potential of these frames to provide a useful description of yeast colony growth. This study will focus on finding the relation between the spatial position of the cells and generation that is formed.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Computational framework,Development and applications,Diverse methods,External interference,Heterogeneous architectures,Network science,Network-based approach,Spatial positions[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1245/1/012006[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]