Enter your keyword

2-s2.0-85074773206

[vc_empty_space][vc_empty_space]

Thermoelectric Performance of Ge0.99-xNa0.01AgxSe

Gustiani V.F.a, Septiany L.b, Nugroho A.A.a, Blake G.R.b

a Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia
b Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Doped GeSe has theoretically been predicted to exhibit ultralow thermal conductivity that yields a high figure of merit (ZT) of 2.6 at 800K. However, experimental studies of the thermoelectric performance of GeSe have received little attention due to poor doping efficiency. Doping GeSe with Na is reported to reduce its thermal conductivity due to the growth of Na-rich precipitates, but the electrical resistivity remains too high. In order to suppress both thermal conductivity and resistivity, a co-doping approach was used by introducing Na and Ag. Characterization using scanning electron microscopy indicates the presence of both Ag- and Na-rich precipitates within the GeSe matrix. The resistivity decreases by ∼6 times at high temperature with increasing Ag concentration. However, the thermal conductivity only decreases by ∼1.5 times after Ag doping of about 0.5%. The Seebeck coefficient remains constant with doping at high temperature. Overall, the thermoelectric performance of Na,Ag co-doped GeSe is optimum at around 0.5 mol% of Ag.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Ag doping,Co-doped,Co-doping,Doping efficiency,Figure of merits,High temperature,Thermoelectric performance[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was supported by an LPDP scholarship for LS and by the ITB-Zernike Sandwich Programme. VF and AAN acknowledge support from P3MI-ITB 2018 Program.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1245/1/012094[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]