[vc_empty_space][vc_empty_space]
Physical model of vertical water movement inside a soil-column apparatus for infiltration study with a two-way orientation approach
Fajar R.A.a, Handayani G.a, Widodo L.E.a, Notosiswoyo S.a, Pamungkas T.C.a
a Post Graduate Program in Mining Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Published by ITB Journal Publisher.To improve the theory of Richard’s equation, studying infiltration under free-draining conditions at the ground surface is necessary. Verification is required to clarify the physical model of water movement. The aim of this study was to describe multistage measurements of both the wetting and the drying front scheme of one-dimensional infiltration at laboratory scale. A soil-column infiltration apparatus was built consisting of a double acrylic wall, a sensor set and a light bulb. Acrylic was chosen as the material for the wall to minimize possible heat conduction on the wall side, which was wrapped in double insulation to achieve adiabatic condition. The following three main sensors were used and controlled by a microcontroller: Water-content, pressure and temperature sensors. Meanwhile, the light bulb at the top of the apparatus was set to non-isothermal condition. The instrument was successfully built to describe vertical water movement. Slight modifications were carried out to ensure more precise observation. This resulted in the initiating of new shape interpretation based on the water-ponding measurement to refine the simplified pattern that was introduced by the conventional Green-Ampt theory.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adiabatic,Adiabatic conditions,Non-isothermal condition,Nonisothermal,Pressure and temperature sensors,Shape interpretations,Soil column,Water ponding[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adiabatic,Infiltration,Non-isothermal,Soil-column,Water-ponding[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to thank the Institute of Research and Community Services (LPPM) of Bandung Institute of Technology for the P3MI research funding. We are also grateful to Mr. Akub and the instrumentation teams at the Earth Physics and Complex-system laboratory for the technical assistance.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/j.eng.technol.sci.2019.51.5.2[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]