Enter your keyword

2-s2.0-85074995874

[vc_empty_space][vc_empty_space]

Attitude and flight path control systems of unmanned combat aerial vehicle

Hanif A.a, Sasongko R.A.a

a Institut Teknologi Bandung, Faculty of Mechanical and Aerospace Engineering, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Published under licence by IOP Publishing Ltd.UCAV as one of the UAV application needs to have good maneuverability to be able to carry out missions. For this reason, an Automatic Flight Control System (AFCS) is needed to facilitate the operator in controlling the maneuvering motion. This study aims to design an automatic flight control system that is able to track the given maneuver control commands so that the aircraft can maneuver according to the control command. First, an analysis of the open loop system is conducted to determine the characteristics of the UCAV to be controlled. The stability augmentation system is then designed to improve the dynamic stability characteristics of UCAV. Finally, a command augmentation system is created that uses the tracking controller principle. This principle aims to track control commands (attitude and flight path variables to control maneuvers) so that the aircraft is able to maneuver according to the given control command. The simulation results show that the automatic flight control system that is being made has been successful in tracking the maneuver control command with the optimal method.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Augmentation systems,Automatic flight control systems,Control command,Maneuvering motion,Open loop systems,Stability augmentation systems,Tracking controller,Unmanned combat aerial vehicles[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1757-899X/645/1/012019[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]