[vc_empty_space][vc_empty_space]
Deformed conformal symmetry of Kerr–Newman-NUT-AdS black holes
Sakti M.F.A.R.a,b, Ghezelbash A.M.a, Suroso A.b, Zen F.P.b
a Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
b Theoretical Physics Lab., THEPI Division, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019, Springer Science+Business Media, LLC, part of Springer Nature.We find generators of the conformal symmetry for the class of Kerr–Newman-NUT-AdS black holes from the deformed scalar probe equation. We find two classes of solutions for the generators (also known as conformal J and Q pictures). The two classes of deformed generators are the extension of similar generators for the regular conformal symmetry. Moreover, we find that the two pictures can be generalized and extended into a general picture. In each picture, the generators produce an extended local family of SL(2 , R) L× SL(2 , R) R hidden conformal symmetries for the Kerr–Newman-NUT-AdS black holes which are parameterized by one deformation parameter. We find the absorption cross-section of the scalar probes for the Kerr–Newman-NUT-AdS black holes, which in turn, supports the existence of Kerr/CFT correspondence. Moreover, our deformed conformal generators for the Kerr–Newman-NUT-AdS black holes provide the deformed conformal generators for the non-rotating Reissner–Nordström-NUT-AdS black holes.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Conformal field theory,Holography,Kerr–Newman-NUT-AdS geometry,Rotating black holes[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]A. M. Ghezelbash would like to acknowledge the support, by the Natural Sciences and Engineering Research Council of Canada. M. F. A. R. S., A. S, and F. P. Z. are supported partly, by “Riset PMDSU 2018” and “PKPI Scholarship” from Ministry of Research, Technology, and Higher Education of the Republic of Indonesia. 1 The probe field is a massless field which does not induce any back-reaction on the background black holes. For a massive scalar field, there is an extra term μ 2 ρ 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu ^2 \rho ^2 $$\end{document} in the scalar wave equation, where μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document} is the mass of scalar field [ 64 ]. The presence of the mass term hinders to establish the holography between the black holes and the CFT. 2 Another alternative way to realize two possible dual CFTs to a four-dimensional charged rotating black hole, is to uplift the black hole to five dimensions by adding an internal direction χ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} to four dimensions, such that 2.20 Φ ( t , r , θ , ϕ , χ ) = e – i ω t + i m ϕ + i q χ R ( r ) S ( θ ) . \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Phi (t,r,\theta ,\phi ,\chi ) = \mathrm {e}^{-i\omega t + im\phi + i{q}\chi } R(r) S(\theta ). \end{aligned}$$\end{document} We notice that the internal space χ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} leads to a U (1) symmetry along the coordinate ϕ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} . This extension has been used to investigate the RN/CFT correspondence [ 50 – 54 ]. The existence of two coordinates ϕ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} and χ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} with U (1) symmetry, provides the twofold hidden symmetry for the charged rotating black holes in J and Q pictures, respectively [ 41 , 49 , 65 ]. We also note that an S L ( 2 , Z ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb {Z})$$\end{document} modular group transformation for the torus ( ϕ , χ ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi ,\chi )$$\end{document} provides merging the two different J and Q pictures into the general picture. 3 Note that e is implicitly in the expressions for the horizons r + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ r_+$$\end{document} and r ∗ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_* $$\end{document} . 4 The authors in [ 75 , 76 ], compute the entanglement entropy from the holographic prescription, that is given by the area of the minimal surface at constant time, S A = Area ( γ A ) 4 G N ( d + 2 ) , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} S_A = \frac{\text {Area}(\gamma _A)}{4G_N^{(d+2)}}, \end{aligned}$$\end{document} where γ A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma _A $$\end{document} is the (unique) minimal surface in AdS d + 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {AdS}_{d+2}$$\end{document} whose boundary coincides with the boundary of the region A . The setup of this calculation is the AdS d + 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {AdS}_{d+2} $$\end{document} space with the Newton constant G N ( d + 2 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_N^{(d+2)} $$\end{document} which is dual to a CFT d + 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CFT}_{d+1} $$\end{document} . In that work, they compute for low and high temperature assumption. In high temperature calculation, it is shown that the entanglement entropy of the black hole is the Bekenstein–Hawking entropy plus the correction term. To confirm that computation, they also calculate the entropy using Cardy formula from AdS 3 / CFT 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {AdS}_3 /\hbox {CFT}_2$$\end{document} correspondence since the generic BTZ black hole’s degree of freedom is dual to the CFT degree of freedom. They finally prove that both calculations are in agreement, so the entanglement entropy of the black hole is also the entropy from CFT with the correction.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s10714-019-2641-z[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]