Enter your keyword

2-s2.0-85075349841

[vc_empty_space][vc_empty_space]

Double-difference tomography of p-and s-wave velocity structure beneath the western part of Java, Indonesia

Rosalia S.a, Widiyantoro S.a, Nugraha A.D.a, Supendi P.a,b

a Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Bandung, 40132, Indonesia
b Meteorological, Climatological, and Geophysical Agency (BMKG), Bandung, 40161, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© The Seismological Society of China and Institute of Geophysics, China Earthquake Administration 2019.West Java in the western part of the Sunda Arc has a relatively high seismicity due to subduction activity and faults. In this study, double-difference tomography was used to obtain the 3D velocity tomograms of P and S waves beneath the western part of Java. To infer the geometry of the structure beneath the study area, precise earthquake hypocenter determination was first performed before tomographic imaging. For this, earthquake waveform data were extracted from the regional Meteorological, Climatological, Geophysical Agency (BMKG) network of Indonesia from South Sumatra to Central Java. The P and S arrival times for about 1,000 events in the period April 2009 to July 2016 were selected, the key features being events of magnitude > 3, azimuthal gap 8. A nonlinear method using the oct-tree sampling algorithm from the NonLinLoc program was employed to determine the earthquake hypocenters. The hypocenter locations were then relocated using double-difference tomography (tomoDD). A significant reduction of travel-time (root mean square basis) and a better clustering of earthquakes were achieved which correlated well with the geological structure in West Java. Double-difference tomography was found to give a clear velocity structure, especially beneath the volcanic arc area, i.e., under Mt Anak Krakatau, Mt Salak and the mountains complex in the southern part of West Java. Low velocity anomalies for the P and S waves as well as the vP/vS ratio below the volcanoes indicated possible partial melting of the upper mantle which ascended from the subducted slab beneath the volcanic arc.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Double-difference tomography,P-and S-wave velocity structures,West Java[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We are grateful to the Meteorology, Climatology and Geophysics Agency of Indonesia (BMKG) for the wave-form and catalog data used in this study and the Directorate General of Resources for Science Technology and the Higher Education of the Republic of Indonesia for granting a PMDSU scholarship to SR. We also thank the reviewers for their constructive comments. Figures 1, 5, 6, 7, 9, 10 and 11 were produced using GMT Software (Wessel and Smith, 1998). Topography and bathymetry data were taken from SRTM 30 Plus (Becker et al., 2009). The plate boundary diagram was adapted from Bird (2003).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.29382/eqs-2019-0012-2[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]