Enter your keyword

2-s2.0-85075905677

[vc_empty_space][vc_empty_space]

Sound absorption performance of sugar palm trunk fibers

Prabowo A.E.a, Diharjo K.a, Ubaidillaha, Prasetiyo I.b

a Mechanical Engineering Department, Engineering Faculty, Sebelas Maret University, Surakarta, 57126, Indonesia
b Acoustic Laboratory, Engineering Physics Department, Bandung Institute of Technology, Bandung, 40116, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 The Authors, published by EDP Sciences.The purpose of this research is to investigate the effect of bulk density, thickness, and air gap to sound absorption performance on absorber based sugar palm trunk fibers. The fibers were obtained from solid waste on Small-Medium Enterprises of sago flour processing in Klaten, Central Java, Indonesia. The absorber specimens were formed from the fibers using a simple press molding in an oven at 150 °C. According to ISO 10534-2, the absorber samples were tested using two microphones impedance tube with random noise source to get the curve of the sound absorption coefficient. The result shows that the absorption performance can be improved by increasing bulk density and increasing of sample thickness. Especially at low frequencies, improvement of the sound absorption coefficient can be achieved (NAC > 0.8) by applying the air gap behind the sample. The best performance of absorber based sugar palm trunk fiber can be achieved for (1 000 to 6 000) Hz range frequency.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Absorption performance,Acoustic materials,Impedance tubes,Sample thickness,Small medium enterprise,Sound absorption,Sound absorption coefficients,Two microphones[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Acoustic material,Natural fibers,Sound absorption coefficient[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The author would thank the Ministry of Research, Technology and Higher Education, The Republic of Indonesia, especially the Directorate General of Research and Development Strengthening for support of research and publication financial by a scheme of Post Graduate Research Grant (Hibah Tim Pascasarjana) 2018 (0045/E3/LL/2018, 16 Januari 2018, No.4497, Kuncoro Diharjo, Universitas 11 Maret, skema PTP).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1051/e3sconf/201913001003[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]