Enter your keyword

2-s2.0-85076121978

[vc_empty_space][vc_empty_space]

A Gillespie Algorithm and Upper Bound of Infection Mean on Finite Network

Indratno S.W.a, Antonio Y.a

a Statistics Research Division, Institut Teknologi Bandung, Center for Advanced Sciences Building, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019, Springer Nature Singapore Pte Ltd.Cyber-attacks are expected to increase in the next few years. This condition requires an estimate of the amount of risk that will occur. Cyber risk can be reflected in the number of infected computers obtained by models that can explain the process of spreading viruses on computer networks. Mathematical models on epidemiology can be used to understand the process of spreading viruses on computer networks inspired by the process of spreading diseases in biological populations. Stochastic susceptible-infectious-susceptible (SIS) model is a simple epidemic model will be used to estimate the risk (number of infected computers) on several computer networks. Based on a fixed population and homogeneous mixing assumptions, we get the upper bound of infection mean from the model. Mean of the sample path in dynamic processes is generated by the Gillespie Algorithm or Simulation Stochastic Algorithm (SSA) to compare with the upper bound of the infection mean. The computational result confirms the mean of sample paths always less than the upper bound of infection mean.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Biological populations,Computational results,Gillespie algorithm,Infection mean,SIS model,Spreading disease,Stochastic algorithms,Upper Bound[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Gillespie algorithm,Infection mean,Stochastic SIS model,Upper bound[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Acknowledgement. We would like to thank the Institute for Research and Community Services (LPPM-ITB) for funding this research through the P3MI program given to the Statistics Research Division.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/978-981-15-0399-3_29[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]