Enter your keyword

2-s2.0-85076146424

[vc_empty_space][vc_empty_space]

RGO based photo-anode in dye-sensitized solar cells (DSSC) and its photovoltaic characteristics

Arsyad W.S.a, Pristianti A.a, Agusu L.a, Hidayat R.b

a Physics Department, Faculty of Mathematics and Natural Sciences, Halu Oleo University, South East Sulawesi, 93231, Indonesia
b Physics of Magnetism and Photonics, Physics Department, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.On the attempt to increase transport properties of the photo-anode in DSSC, we synthesized rGO powder from graphite bar (commercially available) using modified Hummer’s method. The SEM-EDS results had confirmed the attachment of the rGO layer to the FTO substrate. For DSSC cells, we made two cells configuration, the first one was stacking layers of rGO and TiO2 resulting configuration of TiO2/rGO/TiO2 (A2) and rGO/TiO2/rGO (A3), where rGO was deposited by spin coating and TiO2 was deposited by a screen printing technique. The second one, the rGO powder was mixed with TiO2 paste with several ratios in weight, namely TiO2:rGO 40:1 (B1), 40:2 (B2), and 40:8 (B3) and then deposited on the FTO substrate by screen printing. The reference cell was assigned as A1 (TiO2 only). From the conductivity measurement using the four-probe method, the utilization of rGO layer increased the conductivity of photoanode layer, namely (1.37, 2.9 and 6.3)x10-2 Ω-1cm-1 for A1 to A3 and (1.5, 2.5, and 3.7)x10-2 Ω-1cm-1 for B1 to B3. From the photovoltaic measurement, we found that the efficiency of the DSSC cell firstly increased with the insertion of rGO layer, from 1.8% (A1) to 4.59% (A2), and decreased to 3.22%, as the conductivity increased in A3. While for the composite of TiO2:rGO, the efficiency of the cell reduced with the increased amount of rGO, from 3.45% (B1) to 2.9% and 1.9% for B2 and B3. We found that the reduction of photovoltaic performance was affected by two main factors, specifically, direct contact between rGO and redox species in the electrolyte, which induced recombination process, and conductivity of the photo-anode layer. To fully achieve the advantage of rGO utilization in photo-anode, once must be considered was the use of protection layer on top of the rGO layer to avoid direct contact between the rGO/electrolyte interface.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Conductivity measurements,DSSC,Photo-anodes,Photovoltaic,Photovoltaic characteristics,Photovoltaic measurements,Photovoltaic performance,Screen printing technique[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]conductivity,DSSC,efficiency,photo-anode,photovoltaic,rGO[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1757-899X/622/1/012008[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]