Enter your keyword

2-s2.0-85076233404

[vc_empty_space][vc_empty_space]

On the total edge irregularity strength of some copies of ladder graphs

Ramdani R.a, Salman A.N.M.b, Assiyatun H.b

a Department of Mathematics, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Bandung, Indonesia
b Department of Mathematics, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Let G = (V(G), E(G)) be a graph and k be a positive integer. A total k-labeling of G is a map f: V(G) ∪ E(G) → {1,2, ⋯, k }. The edge weight uv under the labeling f is defined by w f(uv) = f(u) + f(uv) + f(v) and denoted by by w f(uv) and. A total k-labeling of G is called edge irregular if every two distinct edges have distinct weight. The total edge irregularity strength of G is denoted by tes(G) and defined by the minimum k such that G has an edge irregular total k-labeling. The labeling was introduced by Bača et al. in 2007. In this paper, we determine the total edge irregularity strength of some copies of ladder graphs.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Edge weights,Irregularity strength,Ladder graphs,Positive integers[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1280/2/022038[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]