Enter your keyword

2-s2.0-85076259355

[vc_empty_space][vc_empty_space]

Basic design parameter optimization on water cooled thorium breeder reactor

Permana S.a

a Nuclear Physics and Bio Physics Research Division, Bandung Institute of Technology, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Elsevier LtdBasic study on optimization of heavy water cooled thorium breeding reactor has been investigated to estimate the feasible design region of breeding and negative void reactivity coefficient. Those parametric surveys are moderator to fuel ratio, fuel pin diameter, fuel pellet power density, and void faction. A fuel pin diameter of 14.5 mm shows the optimum feasible fuel breeding and less required U-233 fissile content. The systems require the enrichment less than 8% and it gives some possible area of breeding. The effect of moderator is essential to make the negative void reactivity. Void fraction effect is still good enough to make more negative void reactivity, however, for no more heavy water as moderator, it obtains less negative void reactivity or becomes slightly positive. It has been shown that several significant parameters affect to the feasibility breeding windows and potential negative void reactivity based on heavy water-cooled thorium reactor.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Breeding ratio,Design parameters,Fuel cycle,Heavy water coolants,Parametric surveys,Power densities,Void reactivity,Void reactivity coefficient[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Breeding ratio,Enrichment,Equilibrium fuel cycle,Heavy water coolant,Negative void reactivity,Thorium[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We would like acknowledge and extend our gratitude to ITB’s Research Innovative Program and to the Desentralization Research Program of ministry of research, technology and higher education for the Support of the research activities. Appendix A[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.anucene.2019.107218[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]