[vc_empty_space][vc_empty_space]
Characterization of Lithium Tantalate (LiTaO3) Film on the Concentration Variations of Ruthenium Oxide (RuO2) Dope
Irzaman I.a, Prawira D.S.a, Irmansyah I.a, Yuliarto B.b, Siregar U.J.a
a Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
b Department of Engineering Physics, Faculty of Engineering, Bandung Institute of Technology, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019, © 2019 Taylor & Francis Group, LLC.One of the ferroelectric materials that has a large potential to be developed is LiTaO3 film. LiTaO3 film has been successfully produced by doping with RuO2 concentrations of 0%, 2%, 4%, and 6% using the CSD (Chemical Solution Deposition) method with a spin coating technique at 8000 rpm and an annealing temperature of 850° C. Samples were characterized using UV-Vis Spectrophotometry, SEM, XRD, and EDX. The film thicknesses at dope concentrations of 0%, 2%, 4%, and 6% 0.2681 µm, were 0.2234 µm, 0.2234 µm, and 0.5078 µm, respectively, with bandgap energy levels of 2.38 eV, 2.29 eV, 2.04 eV, and 2.47 eV. The lattice parameters obtained were a = 5.098961 Å and c = 14.316897 Å (0% RuO2), a = 5.065135 Å and c = 14.058488 Å (2% RuO2), a = 5.069937 Å and c = 114.275256 Å (4% RuO2), and a = 5.058727 Å and c = 14.253829 Å (6% RuO2) causing the crystal structure to be hexagonal (α = β = 90° and γ = 120°) with crystal sizes for each film 0.258 µm, 0.285 µm, 0.295 µm, and 0.36 µm.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Annealing temperatures,Band gap energy,Chemical solution deposition,Concentration variation,LiTaO3,RuO2 dope,Ruthenium oxide,UV-vis spectrophotometry[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]bandgap energy,CSD,LiTaO3,RuO2 dope[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We gratefully acknowledge the funding 129/SP2H/PTNBH/DRPM/2018 from the Kementerian Riset, Teknologi dan Pendidikan Tinggi, Republic of Indonesia through ?Hibah Penelitian Dasar Unggulan Perguruan Tinggi? grant 2019 and we also gratefully acknowledge the funding from United States Agency for International Development through Sustainable Higher Education Research Alliances program Center for Development of Sustainable Region (CDSR) 2018.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1080/10584587.2019.1668688[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]