Enter your keyword

2-s2.0-85076429894

[vc_empty_space][vc_empty_space]

Data analysis on sea water quality data in Jakarta Bay using Principal Components Analysis (PCA) method during transitional monsoon 2012

Martina A.a, Radjawane I.M.a

a Oceanography Research Group, Bandung Institute of Technology, Bandung 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.To get a conclusion from a data matrix consisting of 3 individuals and 2 variables is relatively easy. However, it is very difficult to understand the large amount of data. Therefore, it requires data analysis methods for an easier representation. Based on sea water quality data in Jakarta Bay from BPLHD DKI Jakarta (Jakarta Environmental Management Board), there are 24 biological, physical, and chemical parameters in 23 stations. Based on the quality and quantitative of data, we use only one set data on October 2012 as representative of the Second Transition monsoon. Analysing was conducted for 10 parameters namely turbidity, total suspended solid (TSS), temperature, pH, salinity, dissolved oxygen (DO), biological oxygen demand (BOD), methylene blue active substances, phenol, and zinc (Zn) at 23 stations. Consequently, in this paper, we get a conclusion from the data using principal component analysis (PCA) method for its application in data analysis. The method of PCA is used to analyse the data matrix from a similarity point of view between stations and correlation between parameters. The result of PCA is four principal components i.e. PC 1 (27.73% of the variance) is mainly related to TSS, temperature, salinity, and DO. PC 2 (16.33% of the variance) is mainly related to BOD. PC 3 (12.39% of variance) is mainly related to MBAS, phenol, and zinc. PC 4 explains 11.09% of variances related mainly to turbidity.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Biological oxygen demand,Chemical parameters,Correlation between parameters,Data analysis methods,Principal Components,Principal components analysis,Seawater quality,Total suspended solids[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1755-1315/339/1/012023[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]