Enter your keyword

2-s2.0-85076475074

[vc_empty_space][vc_empty_space]

Application of high strength reinforcing bars and fibrous concrete in earthquake-resistant structure elements

Imansyah M.D.a, Imran I.a, Kamaruddin K.S.a, Aryanto A.a, Riyansyah M.a

a Post Graduate Program of Faculty of Civil Engineering, Bandung Institute of Technology, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019, Construction Research Institute of Malaysia. All rights reserved.The use of high strength reinforcing bars has becoming an interesting and cost-efficient option in construction industry recently. However, their application is still limited due to their low deformability which may induce a brittle collapse in the structures. Also, longer anchorage length is needed to transfer stress from reinforcing bars to the surrounding concrete. This paper focuses on investigating the influence of high-strength reinforcing bars on the behavior of structural elements, and the effect of fibrous concrete to compensate the negative effect of high-strength reinforcing bars. Five half-scaled specimens of interior joints, divided into 3 groups, casted using plain or fibrous concrete and reinforced with conventional 420 MPa or high strength reinforcing bar of 520 MPa. First group consisted of a specimen with conventional reinforcing bars and plain concrete, whereas the second group consisted of two specimens with high-strength reinforcing bars and plain concrete. The last group is similar to the second, with the addition of polypropylene fibre into concrete matrix. Loading protocol of all test specimens is defined according to ACI 374.2-13. The structural behaviors, such as dissipated energy, bond between reinforcing bars and surrounding concrete, and stiffness degradation of the five specimens were evaluated and compared.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Beam-column joint,Bond,Cyclic loading,High-strength reinforcing steel,Polypropylene fibre reinforced concrete[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]