[vc_empty_space][vc_empty_space]
Analytical and numerical studies for harbor oscillation in a semi-closed basin of various geometric shapes with porous media
Magdalena I.a, Rif’atin H.Q.a
a Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, West Java, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 International Association for Mathematics and Computers in Simulation (IMACS)In this paper, we will observe the wave profile that comes to a harbor of various geometries shapes with porous media at the edge of it. The governing equation is linear shallow water equation with modification by adding a friction term in the momentum equation. The analytical solution is derived to get the value of natural resonant period of the basin for various geometric. The equation will be solved numerically using finite volume method on a staggered grid. For validation, we compare our numerical results with the analytical solution. Effect of the friction term as the existence of porous media for wave’s resonance will be analyzed numerically.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Geometric shape,Governing equations,Harbor oscillations,Linear shallow water equations,Momentum equation,Natural resonant period,Numerical results,Staggered grid[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Finite volume method on a staggered grid,Linear shallow water equation,Natural resonant period[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘The authors acknowledge the support from Riset ITB and The Royal Academy of Engineering (Grant no. IAAP1/100086 ).’}, {‘$’: ‘The authors acknowledge the support from Riset ITB and The Royal Academy of Engineering (Grant no. IAAP1/100086).’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.matcom.2019.10.020[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]