Enter your keyword

2-s2.0-85076765013

[vc_empty_space][vc_empty_space]

Fast pyrolysis with fractional condensation of lignin-rich digested stillage from second-generation bioethanol production

Priharto N.a,b, Ronsse F.b, Yildiz G.c, Heeres H.J.d, Deuss P.J.d, Prins W.b

a School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Department of Green Chemistry & Technology, Ghent University, Gent, 9000, Belgium
c Department of Energy Systems Engineering, Izmir Institute of Technology, Urla-Izmir, 35430, Turkey
d Department of Chemical Engineering, University of Groningen, Groningen, 9747 AG, Netherlands

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Elsevier B.V.Poplar-derived lignin-rich feedstock (i.e. stillage) obtained from bioethanol production was subjected to fast pyrolysis in a modified fluidised bed reactor at 430 °C, 480 °C, and 530 °C. The stillage was pretreated by enzymatic digestion prior to fast pyrolysis. Pyrolysis vapors were collected by fractional condensation to separate the heavy organic and aqueous phase liquids. The intention of this study was to assess the potential utilization of lignin-rich digested stillage as a fast pyrolysis feedstock. Heavy organic and aqueous phase pyrolysis liquids were obtained in yields ranging from 15.1–18.1 wt.% and 9.7–13.4 wt.% respectively. The rest of the feedstock material was converted to char (37.1–44.7 wt.%) and non-condensable gases (27.1–31.5 wt.%). Detailed liquid analysis indicated that the heavy organic phase fractions contain compounds arising from the degradation of lignin, residual microbial biomass and remaining polysaccharides. Fast pyrolysis adds 26.8 wt.% to the conversion of this otherwise recalcitrant feedstock material, thereby reducing waste generation and enhancing the value of second-generation bioethanol production.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bio-ethanol production,Enzymatic digestions,Fast pyrolysis,Fluidised bed reactors,Mechanically stirred bed,Pyrolysis liquids,Second generation bioethanol,Stillage[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Fast pyrolysis,Fractional condensation,Lignin-rich digested stillage,Mechanically stirred bed,Pyrolysis liquids[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.jaap.2019.104756[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]