Enter your keyword

2-s2.0-85077269971

[vc_empty_space][vc_empty_space]

Effect of Acid Doping on Junction Characteristics of ITO/Polyaniline/N719/Ag Diode

Reza M.a, Steky F.V.a, Suendo V.a

a Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020, The Minerals, Metals & Materials Society.In this paper, we demonstrate the fabrication and electrical characterization of a heterojunction Schottky diode between polyaniline (PANI) and a ruthenium-based organic semiconductor (N719). In this system, PANI behaves as an organic p-type conducting polymer while N719 acts as an n-type semiconductor. The fabrication was carried out using different methods to deposit each component: solution casting for PANI, spray coating for N719, and screen-printing for silver paste. The PANI film was doped by soaking it in HCl solutions of different concentrations to form emeraldine salt, i.e., a conductive type of PANI. Electrical characterizations of PANI and the diode were performed using conductivity and current density–voltage (J–V) measurements. The maximum conductivity of PANI was obtained at 3.18 × 10−2 S/cm using an HCl concentration of 1 M. The fabricated diode exhibited a low Schottky barrier (ΦB = 0.48 eV) and rectifying behavior (γ ∼ 9) with moderate ideality factor (η ∼ 8). Acid doping of PANI caused better diode performance and an increase in current density by four orders of magnitude.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Acid doping,Electrical conductivity,Emeraldine salt,Schottky barrier heights,Schottky diodes[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]acid doping,electrical conductivity,emeraldine salt,Heterojunction Schottky diode,polyaniline,Schottky barrier height[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s11664-019-07906-z[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]