Enter your keyword

2-s2.0-85077505230

[vc_empty_space][vc_empty_space]

Rainbow 2-connectivity of edge-comb product of a cycle and a Hamiltonian graph

Baca M.a, Salman A.N.M.b, Simanjuntak R.b, Susanti B.H.b

a Department of Applied Mathematics, Technical University, Košice, Slovakia
b Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020, Indian Academy of Sciences.An edge-colored graph G is rainbow k-connected, if for every two vertices of G, there are k internally disjoint rainbow paths, i.e., if no two edges of each path are colored the same. The minimum number of colors needed for which there exists a rainbow k-connected coloring of G, rck(G) , is the rainbow k-connection number of G. Let G and H be two connected graphs, where O is an orientation of G. Let e→ be an oriented edge of H. The edge-comb product of G (under the orientation O) and H on e→ , Go⊳ e→H, is a graph obtained by taking one copy of G and |E(G)| copies of H and identifying the i-th copy of H at the edge e→ to the i-th edge of G, where the two edges have the same orientation. In this paper, we provide sharp lower and upper bounds for rainbow 2-connection numbers of edge-comb product of a cycle and a Hamiltonian graph. We also determine the rainbow 2-connection numbers of edge-comb product of a cycle with some graphs, i.e. complete graph, fan graph, cycle graph, and wheel graph.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cycle,edge-comb product,Hamiltonian graph,rainbow 2-connectivity,rainbow path[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cycle,edge-comb product,Hamiltonian graph,rainbow 2-connectivity,rainbow path[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s12044-019-0549-x[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]