Enter your keyword

2-s2.0-85077712134

[vc_empty_space][vc_empty_space]

FDTD Analysis for TE Mode Resonant Frequency of Anisotropic Circular Dielectric Resonator

Nusantara H.a, Suksmono A.B.a, Ludiyati H.b, Munir A.a

a Telematics Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
b Bandung State Polytechnic, Department of Electrical Engineering, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.It is well-known that the resonant frequency is one of essential parameters for dielectric resonator in which it is usually determined by dielectric properties of material. Therefore, the analysis of its resonant frequency is becoming important stage upon the implementation. This paper deals with the analysis of transverse electric (TE) mode resonant frequency using a cylindrical coordinate system-based finite-difference time-domain (FDTD) method for anisotropic circular dielectric resonator. The anisotropic permittivity of circular dielectric resonator is determined by setting the relative permittivity with different value for each axis of cylindrical coordinate system. The analysis is carried out by discretizing an anisotropic circular dielectric resonator encapsulated in a circular waveguide for 3 TE mode resonant frequencies. It shows that the proposed FDTD method could have high feasibility for resonant frequency analysis with adequate accuracy comparable to the theoretical approach.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Anisotropic permittivity,Cylindrical coordinate systems,FDTD analysis,Relative permittivity,TE mode,Theoretical approach,Transverse electric modes[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]anisotropic permittivity,circular dielectric resonator,FDTD method,resonant frequency,TE mode[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/TENCON.2019.8929274[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]