[vc_empty_space][vc_empty_space]
Xylanase inhibition by the derivatives of lignocellulosic material
Maulana Hidayatullah I.a, Setiadi T.a, Tri Ari Penia Kresnowati M.a, Boopathy R.b
a Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Department of Biological Sciences, Nicholls State University, Thibodaux, 70310, United States
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Elsevier LtdHydrolysis of lignocellulosic materials into simple sugar plays an important role in biorefinery. Hemicellulosic sugars from the hydrolysis of lignocellulosic materials could be used in xylitol production. However, xylanase activity during hydrolysis process is affected by activators and inhibitors that may present in the reaction system. The pretreatment process was reported to produce compounds that may affect the enzymatic hydrolysis process, such as furans, aliphatic acid, and aromatics. The purpose of this study was to investigate the inhibition effect of these potential inhibitors on xylanase activity. Three groups of potential inhibitors were evaluated including, furan, aliphatic acid, and hydrolysis-fermentation products. The result showed that ethanol, vanillin, and formic acid gave the highest inhibition effect from each group. Ethanol competed with xylanase competitively. Vanillin showed non-competitive inhibition. Formic acid performed mixed-inhibition by reducing maximum hydrolysis rate and giving varied Michaelis constant values at different concentrations.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Competitive inhibition,Hydrolysis-fermentation,Lignocellulosic material,Michaelis constants,Potential inhibitors,Pretreatment process,Xylan,Xylanases,Ethanol,Fermentation,Hydrolysis,Lignin[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Lignocellulosic material derivatives,Xylan,Xylanase inhibition,Xylanase performance,Xylose formation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was funded by World Class Professor (grant numbers T/82/D2.3/KK.04.05/2019 ) and Program Magister Doktor untuk Sarjana Unggul (grant numbers 0017y/I1.C06/PL/2019 ), Ministry of Research and Higher Education, Republic of Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.biortech.2020.122740[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]