Enter your keyword

2-s2.0-85077964974

[vc_empty_space][vc_empty_space]

Power Allocation for Group LDS-OFDM in Underlay Cognitive Radio

Meylani L.a, Hidayat I.a, Kurniawan A.a, Arifianto M.S.a

a Institut Teknologi Bandung, School of Electrical Engineering and Informatics, Bandung, Indonesia
b School of Electrical Engineering, Telkom University, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.Low density signature orthogonal frequency division multiplexing (LDS-OFDM) is a promising multiple access that increases spectrum utilization. In LDS-OFDM, each subcarrier can be accessed by more than one user, however, it is limited to dc users. Each user spreads its symbols in a number of dv subcarriers. In this paper, we propose power allocation for LDS-OFDM in underlay cognitive radio to increase throughput for each secondary user (SU) by manage the power weighting of each user in every subcarrier. The simulation results confirm that our proposed algorithm can increase the throughput of SU compare to equal power weighting. Grouping on allocation resource will affect the outage probability and SU’s throughput.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Low density,Multiple access,Outage probability,Power allocations,Secondary user,Spectrum utilization,Sub-carriers,Underlay cognitive radios[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]low density signature,power allocation,throughput,underlay cognitive radio[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICITEED.2019.8929964[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]