Enter your keyword

2-s2.0-85078150831

[vc_empty_space][vc_empty_space]

Comparative study of stabilization controls of a forklift vehicle

Widyotriatmo A.a

a Instrumentation and Control Research Group, Faculty of Industrial Technology, Insititut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Augie Widyotriatmo, published by Sciendo 2019.This paper presents the control designs for an autonomous forklift vehicle that drive the vehicle from an initial configuration to a final one. Three stabilization controls, which are chained-form time-varying control, sigma-transformed discontinuous control, and navigation-variables-based discontinuous control, for a forklift vehicle are compared by simulations. The sigma-transformed and navigation-variables-based discontinuous controls provide fast convergence motions from an initial to a final configuration, while the time-varying-based control provides oscillatory motion and slow convergence. The sigma-transformed discontinuous control has a set of discontinuous points in which, from a practical point of view, the control signals can blow up if a vehicle enters the set. The navigation-variables-based control, which also has a discontinuous point at the final configuration, does not produce blown up control signals since its boundedness nature. Discussion on the implementation of control algorithm is elucidated for the three stabilization controls for the forklift vehicle.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Autonomous vehicle,discontinuous control,navigation-variables-based control,stabilization control,time-varying-based control[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.2478/ama-2019-0024[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]