Enter your keyword

2-s2.0-85078215848

[vc_empty_space][vc_empty_space]

Improving topology of leach cluster using reinforcement learning method

Dwi Widodo H.K.a, Kurniawan A.a, Sigit Arifianto M.a

a School of Electrical Engineering and Informatics, Institute of Technology Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.Clustering is one of the methods to control interference in wireless sensor network (WSN) and low energy adaptive hierarchy (LEACH) is a pioneer in this area. The cluster formation starts with the random selection of the cluster head (CH) and then each sensor is connected to the cluster head based on the strongest received power. Because the CH’s election is carried out randomly, the CH’s position is not symmetrical in a cluster, even sometimes its position near the cluster’s border. As a result, the cluster members send data with different transmission power, sensors that are located far from CH will transmit with high power and consume much energy. To reduce energy consumption, an intermediate sensor is assigned to receive data from the sensors whose position is far away and transmit to CH. The intermediate sensors are selected using reinforcement learning (RL) method using interference and transmission power as reward’s variable. The simulation demonstrates that the RL method improves the performance of WSN, namely lengthen the network live, increase the received packet in the sink and decrease energy use.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cluster,Cluster formations,Energy,Energy adaptive,Random selection,Reduce energy consumption,Reinforcement learning method,Transmission power[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cluster,Energy,Interference,RL,Sensor[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/SENSORSNANO44414.2019.8940060[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]