[vc_empty_space][vc_empty_space]
Estimation of Nigrescens Palm Oil Ripeness using Contrast and Skewness from 680 nm Image
Setiawan A.W.a, Danudirdjo D.a, Ananda A.R.a
a Institut Teknologi Bandung, School of Electrical Engineering and Informatics, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.This paper aim of this study is to assess the oil palm ripeness using a specific wavelength as a light source, 680 nm, and simple image processing technique. This paper proposes a simple and low computation technique to estimate the oil palm FFB maturity using 680 nm LED as the light source and digital camera to capture the image. There are some parameters that can be used to detect oil palm FFB maturities, such as chlorophyll concentration and fruitlet detachment. In this research, the 680 nm image contrast is used to detect the chlorophyll due to it correlated with the chlorophyll absorbance. The accuracy of this approach technique is 64.94 %. The second approach is using texture analysis, skewness, to differentiate the detached and undetached fruitlets in oil palm FFB. The accuracy of this technique is 68.83 %. The last technique is combining image contrast and skewness. The result of this approach gives accuracy by 68.83 %. From the results, skewness and combination of contrast and skewness give the same accuracy, 68.83 %. It can be concluded that the estimation of oil palm FFB maturity can be done by using an only skewness value of the 680 nm image. The result is in-between another research results in oil palm FFB maturity grading. The proposed technique can be implemented using microcomputer. It will reduce the implementation cost and can be used to build portable systems.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]680 nm image,Chlorophyll concentration,Computation techniques,contrast,Implementation cost,ripeness,Simple image processing techniques,skewness[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]680 nm image,contrast,palm oil,ripeness,skewness[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ISITIA.2019.8937225[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]