[vc_empty_space][vc_empty_space]
Driving-assisted open quantum transport in qubit networks
Dwiputra D.a, Kosasih J.S.a,b, Sulaiman A.b,c, Zen F.P.a,b
a Theoretical Physics Laboratory, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Indonesian Center for Theoretical and Mathematical Physics (ICTMP), Bandung, 40132, Indonesia
c Badan Pengkajian Dan Penerapan Teknologi, Jakarta, 10340, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 American Physical Society.We determine the characteristic of dissipative quantum transport in a coupled qubit network in the presence of on-site and off-diagonal external driving. The work is a generalization of the dephasing-assisted quantum transport where noise is beneficial to the transport efficiency. Using Floquet-Magnus expansion extended to Markovian open systems, we analytically derive transport efficiency and compare it to exact numerical results. We find that periodic driving may increase the efficiency at frequencies near the coupling rate. On the other hand, at some other frequencies the transport may be suppressed. We then propose the enhancement mechanism as the ramification of interplay between driving frequency, dissipative, and trapping rates.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coupling rate,Driving frequencies,Enhancement mechanism,External driving,Magnus expansion,Numerical results,Quantum transport,Transport efficiency[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]F.P.Z. thanks Ministry of Higher Education and Research of Indonesia for Research Funding Desentralisasi 2019. The numerical results was obtained using code written in NumPy [35] and QuTiP [31] , and the figures were made using matplotlib [36] . APPENDIX:[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1103/PhysRevA.101.012113[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]