Enter your keyword

2-s2.0-85078733964

[vc_empty_space][vc_empty_space]

Thermal properties of sago fiber-epoxy composite

Sutrisno W.a, Rahayu M.b, Adhika D.R.a

a Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Department of Physics Education, Musamus University, Merauke, Papua, 99611, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 by the authors. Licensee MDPI, Basel, Switzerland.The aim of this study is to analyze the thermal properties of sago fiber-epoxy composite. The sago fiber-based composite has been prepared using epoxy resin as the matrix, via a simple mixing followed by compression. The compression process includes hot compression (100 °C/10 kgf cm-2) and cold compression (ambient/10 kgf cm-2). The composite series was prepared with 9%, 13%, 17%, 20%, and 23% (w/w) of epoxy resin. Microstructures of all materials used were observed using an SEM (scanning electron microscope) instrument. The thermal properties of the composite and its components were examined through TG/DTA characterization. The samples were heated using the heating rate of 10 °C/min from room temperature to 400 °C, except for epoxy resin, which was heated to 530 °C. TG/DTA results depict three stages of thermal processes of sago fiber-epoxy composite: evaporation of water molecules at below 100 °C with the peak point within the range of 51.3 and 57.3 °C, the damage of sago fiber within the range of 275 and 370 °C with the peak point within the range of 333.3 and 341.3 °C and the damage of epoxy resin at above 350 °C with the peak point at 376.2 °C.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Composite,Epoxy resin,Sago fiber,TG/DTA,Thermal property[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘This research was partially funded by INSTITUT TEKNOLOGI BANDUNG via P3MI research fund scheme with the contract number 1000H/I1. C01/PL/2019 KK Fisika Nuklir dan Biofisika ITB.’}, {‘$’: ‘Acknowledgments: The authors express their gratitude for supports from BPPDN Scholarship from The Ministry of Research and Higher Education, Indonesia and the Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung.’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3390/fib8010004[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]