Enter your keyword

2-s2.0-85079003698

[vc_empty_space][vc_empty_space]

Optimization of sputtered Au film on grating structure as SERS substrate for detection of pesticide

Ulum A.H.a, Destarina L.a, Aminah N.S.a, Srisuai N.b, Boonruang S.b, Nuntawong N.b, Horprathum M.b, Djamal M.a

a Instrumentation and Computational Physics, Department of Physics, Bandung Institute of Technology, Bandung, 40132, Indonesia
b National Electronics Computer and Technology Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Here, we report an efficient approach to optimize the performance of surface enhanced Raman scattering (SERS) substrate. The geometry of the SERS substrate consists of the Au film deposited on polymer grating. The SERS substrate were fabricated by the laser interference lithography (LIL) and magnetron sputtering of Au thin films. The effect of the Au thin film prepared by magnetron sputtering at different deposition time (5-180 s) and operated pressure (3-5 mTorr). The morphology of the obtained samples was observed by field-emission scanning electron microscopy (FE-SEM). The results indicated that optimal SERS substrate with deposition time of 180 s and 3 mTorr-operated pressure was obtained. The limit of detection for methylene blue (MB) and methyl parathion were evaluated at 10-4 M and 10-2 M, respectively. Moreover, our SERS substrate shows the application of a portable Raman spectrophotometer which also promising for on-site pesticide substance detection.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Deposition time,Field emission scanning electron microscopy,Grating structures,Laser interference Lithography (LIL),Limit of detection,Methyl parathion,Polymer gratings,Surface enhanced Raman Scattering (SERS)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was partially supported by Sandwich Program 2019 (World Class University – InstitutTeknologi Bandung). Authors acknowledge the support from NSTDA (National Science and Technology Development Agency), Thailand and we also thank our colleague Assc. Prof. Herman from Bandung Institute of technology who provided insight and expertise that greatly assisted the research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1428/1/012035[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]