[vc_empty_space][vc_empty_space]
Batch study of cadmium biosorption by carbon dioxide enriched aphanothece sp. dried biomass
Satya A.a,b, Harimawan A.a, Haryani G.S.b, Johir M.A.H.c, Vigneswaran S.c, Ngo H.H.c, Setiadi T.a
a Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Research Center for Limnology, Indonesian Institute of Sciences-LIPI, Bogor, 16911, Indonesia
c University of Technology Sydney, Broadway, 2007, Australia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 by the authors.The conventional method for cadmium removal in aqueous solutions (1-100 mg/L) is ineffective and inefficient. Therefore, a batch biosorption reactor using a local freshwater microalga (originating from an urban lake, namely, Situ Rawa Kalong-Depok) as dried biosorbent was tested. Biosorbent made from three kinds of cyanobacterium Aphanothece sp. cultivars (A0, A8, and A15) were used to eliminate cadmium (Cd2+) ions in aqueous solution (1-7 mg/L). The biosorbents were harvested from a photobioreactor system enriched with carbon dioxide gas of 0.04% (atmospheric), 8%, and 15% under continuous light illumination of about 5700-6000 lux for 14 d of cultivation. Produced dried biosorbents had Brunauer-Emmet-Teller (BET) surface area ranges of 0.571-1.846 m2/g. Biosorption of Cd2+ was pH and concentration dependent. Sorption was spontaneous (G =-8.39 to-10.88 kJ/mol), exothermic (H=-41.85 to-49.16 kJ/mol), and decreased randomness (S =-0.102 to-0.126 kJ/molK) on the interface between solid and liquid phases when the process was completed. The kinetic sorption data fitted best to the pseudo-second-order model (k2 = 2.79 x 10-2, 3.96 x 10-2, and 4.54 x 10-2 g/mgmin). The dried biosorbents of A0, A8, and A15, after modeling with the Langmuir and Dubinin-Radushkevich isotherm models, indicated that cadmium binding occurred through chemisorption (qmax, D-R = 9.74 x 10-4, 4.79 x 10-3, and 9.12 x 10-3 mol/g and mean free energy of 8.45, 11.18, and 11.18 kJ/mol) on the monolayer and homogenous surface (qmax, Langmuir of 12.24, 36.90, and 60.24 mg/g). In addition, the results of SEM, EDX, and FTIR showed that there were at least nine functional groups that interacted with Cd2+ (led to bond formation) after biosorption through cation exchange mechanisms, and morphologically the surfaces changed after biosorption. Biosorbent A15 indicated the best resilient features over three cycles of sorption-desorption using 1 M HCl as the desorbing eluent. These biosorbents can be a potent and eco-friendly material for treating aqueous wastewater.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aphanothece sp,Brunauer emmet tellers,Cation-exchange mechanism,Concentration-dependent,Cyanobacterium,Dubinin-Radushkevich,Eco-friendly materials,Pseudo-second order model[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aphanothece sp.,Biosorption,Cadmium,Chemisorption,Cyanobacterium[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors are very grateful to the Research Centre for Limnology and the Research Centre for Geotechnology, The Indonesian Institute of Sciences, for providing facilities. Furthermore, the first author acknowledges the financial support provided by the Centre. Collaboration with the University of Technology Sydney is financed byWorld Class University Program of Institut Teknologi Bandung No 021/WCU-ITB/LL/II/2018[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3390/w12010264[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]