Enter your keyword

2-s2.0-85079905657

[vc_empty_space][vc_empty_space]

Hidden conformal symmetry for Kerr-Newman-NUT-AdS black holes

Sakti M.F.A.R.a,b, Ghezelbash A.M.a, Suroso A.b, Zen F.P.b

a Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
b Theoretical Physics Lab., THEPI Division, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 The Author(s)We find the non-extremal Kerr-Newman-NUT-AdS black holes are holographically dual to the hidden two-dimensional conformal field theories. We explicitly construct two different conformal field theories (known as the J and Q pictures) dual to the black holes, which correspond to the angular momentum J, and the electric charge Q of the black holes. Moreover, we show that the two pictures are included in a more general conformal field theory (known as the general picture). We also consider the extremal Kerr-Newman-NUT-AdS black holes, and investigate all the possible dual pictures. We find agreement between the macroscopic Bekenstein-Hawking entropy of the black holes and the microscopic Cardy entropy of the conformal field theory. Moreover, we calculate the absorption cross-section of the scalar probes in the background of the non-extremal and also the extremal Kerr-Newman-NUT-AdS black holes. We find perfect agreement with the microscopic results from the conformal field theory.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]A.M. Ghezelbash would like to acknowledge the support by the Natural Sciences and Engineering Research Council of Canada . Part of this work by M.F.A.R.S., A.S. and F.P.Z. is supported by: Riset PMDSU 2018 and PKPI Scholarship from Ministry of Research, Technology and Higher Education of the Republic of Indonesia . F.P.Z. also acknowledges the support from P3MI 2020 .[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.nuclphysb.2020.114970[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]