Enter your keyword

2-s2.0-85080866679

[vc_empty_space][vc_empty_space]

Implementation of Harmony in Gradation Concept to Improve Shannon’s Information Entropy Formula

Haryadi S.a

a Institut Teknologi Bandung, Telecommunication Department, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.this paper proposed the modification of the classic Shannon’s formula of information entropy by utilizing a concept that we discovered on April 28, 2016 namely Harmony in Gradation-the Formula for Everything. In more detail, the current formula for calculating information entropy contains the weaknesses because it only contains we call the Harmony, whereas every correct formula that involves the union or random variable which has more than two elements refer to the Harmony in Gradation concept should contain two conflicting elements, namely the Harmony and the Gradation. Then, there are two steps for preparing the modification of Shannon’s entropy formula, which the first is making a formula that has at once the Harmony and the Gradation but has the opposite understanding of the Shannon’s entropy formula, and we call it the Cavity channel formula, then the second is compiles the entropy modified formula. Furthermore, in this paper, it is proven that by using the formula proposed in this paper, the calculation of entropy will be more accurate compared to the use of the Shannon’s formula and will be more in line with the reality of the measurement results. Finally, there are three weaknesses of Shannon’s formula which are simply proven here, first is an error in the maximum entropy value, the second is an inaccurate error represents harmony between symbols, and third is not being able to see significant gradation changes in the appearance of symbols.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Channel cavities,Harmony in Gradation,modified entropy formula,Shannon’s entropy,the Gradation,the Harmony[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Channel cavity formula,Harmony in Gradation,modified entropy formula,Shannon’s entropy formula,the Gradation,the Harmony[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/TSSA48701.2019.8985497[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]