[vc_empty_space][vc_empty_space]
The Sibalaya flowslide initiated by the 28 September 2018 MW 7.5 Palu-Donggala, Indonesia earthquake
Gallant A.P., Montgomery J., Mason H.B., Hutabarat D., Reed A.N., Wartman J., Irsyam M., Simatupang P.T., Alatas I.M., Prakoso W.A., Djarwadi D., Hanifa R., Rahardjo P., Faizal L., Harnanto D.S., Kawanda A., Himawan A., Yasin W.
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.The 28 September 2018 MW 7.5 Palu-Donggala earthquake caused massive flowslides within and nearby the city of Palu. We performed post-earthquake reconnaissance at the flowslide sites and examine a large flowslide that occurred approximately 30 km south of Palu in Sibalaya. We performed field mapping, unmanned aerial vehicle flights, and eyewitness interviews. After the post-earthquake reconnaissance, we performed cone penetration tests. We developed hypothesized flowslide initiation and progression mechanisms from our collective reconnaissance efforts. Based on observed morphological features and eyewitness accounts, the flowslide initiated near a change from steep to shallow terrain. Significant liquefaction of the underlying soils initiated the flowslide after strong ground motions ceased. We speculate progressive liquefaction and/or void redistribution contributed to the timing and delay of initiation.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cone penetration tests,Field mapping,Flow slides,Indonesia,Morphological features,Post-earthquake reconnaissances,Strong ground motion,Underlying soils[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Flowslide,Liquefaction,Palu-Donggala earthquake[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The work of the GEER Association is based upon work supported in part by the National Science Foundation through the Geotechnical Engineering Program under Grant No. CMMI-1826118. Reconnaissance mission field support was provided by the Natural Hazards Reconnaissance Facility (known as the “RAPID Facility”) under NSF Grant No. CMMI-1611820. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. Support for the fourth author was also provided by the Ministry of Finance of Republic of Indonesia through the Indonesia Endowment Fund for Education (LPDP).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s10346-020-01354-1[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]