[vc_empty_space][vc_empty_space]
Brain Tumor Classification with Fisher Vector and Linear Classifier for T1-Weighted Contrast-Enhanced MRI Images
Mubarok A.F.A.a, Thias A.H.a, Handayani A.a, Danudirdjo D.a, Rajab T.E.a
a Biomedical Engineering, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.This paper presents the development of a computational method for classifying three types of brain tumors – i.e. meningioma, glioma and pituitary – from T1-weighted contrast-enhanced MRI images. The proposed method performs feature extraction on a specified set of tumor pixel intensity and uses the extracted information to determine the corresponding type of brain tumor. In feature extraction, the specified tumor area was first augmented to incorporate the sample of the surrounding tissue, prior to intensity extraction with dense local patches. Afterwards, the extracted intensity from each patch was fitted to a Gaussian Mixture Model (GMM) and processed into Fisher Vector representation. Furthermore, we applied four linear classifiers to the Fisher Vector representation and evaluated their classification performance. Our experiments showed that the logistic regression gave the best performance with average accuracy, sensitivity and specificity of 89.9%, 95.2%, and 89.0% respectively.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Brain tumors,Fisher vectors,Gaussian Mixture Model,Linear classifiers,MRI Image[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]brain tumor,Fisher Vector,Gaussian Mixture Models,linear classifier,MRI images[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/MoRSE48060.2019.8998672[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]